Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Tianyan Zhou,^a Qiang Zhang,^a‡ Guoshu Chen^b and Zhongyuan Zhou^b*

^aDepartment of Pharmaceutics, School of Pharmacy, Peking University, 38 Xueyuan Road, Haidian District, Beijing 100083, People's Republic of China, and ^bDepartment of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong

‡ Additional correspondence author. E-mail: zqdodo@yahoo.com.cn

Correspondence e-mail: bczyzhou@inet.polyu.edu.hk

Key indicators

Single-crystal X-ray study T = 294 K Mean σ (C–C) = 0.003 Å R factor = 0.040 wR factor = 0.112 Data-to-parameter ratio = 16.1

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

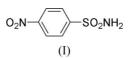
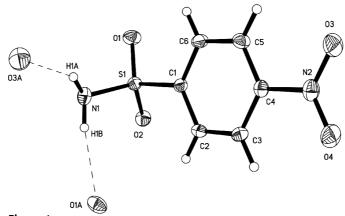
Redetermination of 4-nitrobenzenesulfonamide

In the crystal structure of the title compound, $C_6H_6N_2O_4S$, the nitro group is nearly coplanar with the aromatic ring, the dihedral angle being 1.6 (2)°. The overall molecular organization is stabilized by well defined intermolecular hydrogen bonds, leading to the formation of an infinite planar network structure.

Received 31 August 2004 Accepted 7 September 2004 Online 18 September 2004

Comment

It is known that the diuretically active title compound, (I), is an inhibitor of zinc–enzyme carbonic anhydrase which catalyses the reversible hydration of carbon dioxide (De Benedetti *et al.*, 1988). Its IR and NMR spectra have been reported previously (De Benedetti *et al.*, 1988; Pomerantz *et al.*, 1987; Dahn *et al.*, 1991). The crystal structure of (I) was originally analysed by Tremayne *et al.* (2002) from X-ray powder diffraction data using the Rietveld method. In addition, the crystal and molecular structure of the inclusion compound of the *cis–anti–cis* diastereomer of dicyclohexano-18-crown-6 with the title compound has been determined by X-ray analysis (Fonar *et al.*, 1992). In order to obtain more precise knowledge about the benzenesulfonamide compound, a single-crystal X-ray analysis of (I) was performed in our laboratory.

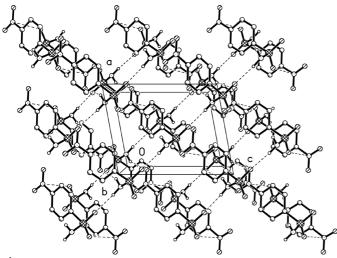

Fig. 1 shows a perspective view of the molecule, together with hydrogen-bonding connections to atoms in adjacent molecules. Angles C1-S1-N1 [107.99 (9)°], C1-S1-O1

Figure 1

The molecular structure of (I), with displacement ellipsoids drawn at the 30% probability level. Dashed lines indicate hydrogen bonds. O1A and O3A correspond to $O1^{ii}$ and $O3^{i}$ in Table 1.

© 2004 International Union of Crystallography Printed in Great Britain – all rights reserved

Packing diagram for the title compound. Hydrogen bonds are shown as dashed lines.

 $[106.84 (9)^{\circ}]$ and C1-S1-O2 $[107.88 (9)^{\circ}]$ are much narrower than O1-S1-O2 $[119.75 (10)^{\circ}]$. This behaviour may be due to the mutual repulsion between the lone-pair electrons of two O atoms in the sulfonamide group. On the other hand, the nitro group is nearly coplanar with the aromatic ring, the dihedral angle being 1.6 (2)°. One of the sulfonamide H atoms approaches the nitro O atom of an adjacent molecule at a distance of 2.20 Å, while the other sulfonamide H atom approaches the sulfonamide O atom of another molecule at a distance of 2.18 Å, indicating the existence of two hydrogen bonds (Table 1), leading to the formation of an infinite planar network structure (Fig. 2).

Experimental

The title compound was obtained from a commercial source (Aldrich). The crystal used for the data collection was obtained by slow evaporation of an ethanol solution at room temperature.

Crystal data

$C_6H_6N_2O_4S$
$M_r = 202.19$
Monoclinic, $P2_1/n$
a = 7.068 (1) Å
b = 13.492 (2) Å
c = 8.841(1) Å
$\beta = 100.459 (3)^{\circ}$ V = 829.1 (2) Å ³
$V = 829.1 (2) \text{ Å}^3$
Z = 4

 $D_x = 1.620 \text{ Mg m}^{-3}$ Mo K\alpha radiation Cell parameters from 3018 reflections $\theta = 1-27.5^{\circ}$ $\mu = 0.37 \text{ mm}^{-1}$ T = 294 (2) KBlock, colourless $0.50 \times 0.20 \times 0.18 \text{ mm}$

Data collection

Bruker SMART CCD area-detector	1901 independent reflections
diffractometer	1457 reflections with $I > 2\sigma(I)$
φ and ω scans	$R_{int} = 0.039$
Absorption correction: multi-scan	$\theta_{max} = 27.6^{\circ}$
(<i>SADABS</i> ; Sheldrick, 1996)	$h = -9 \rightarrow 8$
$T_{min} = 0.835$, $T_{max} = 0.936$	$k = -17 \rightarrow 17$
5526 measured reflections	$I = -11 \rightarrow 9$
Refinement Refinement on F^2 $R[F^2 > 2\sigma(F^2)] = 0.040$ $wR(F^2) = 0.112$ S = 1.05 1901 reflections 118 parameters H-atom parameters constrained	$w = 1/[\sigma^{2}(F_{o}^{2}) + (0.0616P)^{2} + 0.1102P]$ where $P = (F_{o}^{2} + 2F_{c}^{2})/3$ $(\Delta/\sigma)_{max} < 0.001$ $\Delta\rho_{max} = 0.25 \text{ e} \text{ Å}^{-3}$ $\Delta\rho_{min} = -0.46 \text{ e} \text{ Å}^{-3}$

Table 1

Hydrogen-bonding geometry (Å, °).

$D - H \cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - H \cdots A$
$\begin{array}{c} N1 - H1A \cdots O3^{i} \\ N1 - H1B \cdots O1^{ii} \end{array}$	0.90 0.90	2.20 2.18	3.025 (2) 3.075 (3)	153 171
Symmetry codes: (i) $\frac{1}{2}$	$-x, y - \frac{1}{2}, \frac{3}{2} - z$	$(ii) \frac{1}{2} + x, \frac{1}{2} - y$	$v, \frac{1}{2} + z.$	

H atoms were placed in geometrically calculated positions, with C-H = 0.93 and N-H = 0.90 Å, and were included in the final refinement in the riding-model approximation, with $U_{iso}(H) = 1.2U_{eq}(C \text{ or } N)$.

Data collection: *SMART* (Siemens, 1995); cell refinement: *SAINT* (Siemens, 1995); data reduction: *SAINT* and *SHELXTL* (Siemens, 1995); program(s) used to solve structure: *SHELXS*97 (Sheldrick, 1997); program(s) used to refine structure: *SHELXL*97 (Sheldrick, 1997); molecular graphics: *SHELXTL*; software used to prepare material for publication: *SHELXTL*.

References

Dahn, H., Van Toan, V. & Ung-Truong, M.-N. (1991). *Magn. Res.* 29, 897–903.
De Benedetti, P. G., Iarossi, D., Menziani, M. C., Frassineti, C. & Benedetti, A. (1988). *J. Mol. Struct.* 175, 37–42.

Fonar, M. S., Ganin, E. V., Dvorkin, A. A., Simonov, Yu. A., Musienko, G. S., Krylov, E. N. & Malinovskii, T. I. (1992). *Zh. Obshch. Khim.* 62, 1378–1386.

Pomerantz, M. M., Chou, W.-N., Witczak, M. K. & Smith, C. G. (1987). J. Org. Chem. 52, 159–163.

Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.

Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.

Siemens (1995). *SMART* (Version 5.0) *SAINT* (Version 5.0) and *SHELXTL* (Version 5.10). Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.

Tremayne, M., Seaton, C. C. & Glidewell, C. (2002). Acta Cryst. B58, 823-834.